期刊名称:Computational and Structural Biotechnology Journal
印刷版ISSN:2001-0370
出版年度:2013
卷号:7
期号:0
DOI:10.5936/csbj.201304006
语种:English
出版社:Computational and Structural Biotechnology Journal
摘要:Protein degradation is essential for maintaining cellular homeostasis. The proteasome is the central enzyme responsible for non-lysosomal protein degradation in eukaryotic cells. Although proteasome assembly is not yet completely understood, a number of cofactors required for proper assembly and maturation have been identified. Ump1 is a short-lived maturation factor required for the efficient biogenesis of the 20S proteasome. Upon the association of the two precursor complexes, Ump1 is encased and is rapidly degraded after the proteolytic sites in the interior of the nascent proteasome are activated. In order to further understand the mechanisms behind proteasomal maturation, we expressed and purified yeast Ump1 in E. coli for biophysical and structural analysis. We show that recombinant Ump1 is purified as a mixture of different oligomeric species and that oligomerization is mediated by intermolecular disulfide bond formation involving the only cysteine residue present in the protein. Furthermore, a combination of bioinformatic, biochemical and structural analysis revealed that Ump1 shows characteristics of an intrinsically disordered protein, which might become structured only upon interaction with the proteasome subunits.