首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Asymptotic Distribution of the Largest Eigenvalue via Geometric Representations of High-Dimension, Low-Sample-Size Data
  • 本地全文:下载
  • 作者:Aki Ishii ; Kazuyoshi Yata ; Makoto Aoshima
  • 期刊名称:Sri Lankan Journal of Applied Statistics
  • 印刷版ISSN:1391-4987
  • 电子版ISSN:2424-6271
  • 出版年度:2014
  • 卷号:5
  • 期号:4
  • 页码:81-94
  • DOI:10.4038/sljastats.v5i4.7785
  • 语种:English
  • 出版社:The Institute of Applied Statistics, Sri Lanka
  • 摘要:A common feature of high-dimensional data is that the data dimension is high, however, the sample size is relatively low. We call such a data HDLSS data. In this paper, we study HDLSS asymptotics for Gaussian-type HDLSS data. We find a surprising geometric representation of the HDLSS data in a dual space. We give an estimator of the eigenvalue by using the noise-reduction (NR) methodology. We show that the estimator enjoys consistency properties under mild conditions when the dimension is high. We provide an asymptotic distribution for the largest eigenvalue when the dimension is high while the sample size is fixed. We show that the estimator given by the NR methodology holds the asymptotic distribution under a condition milder than that for the conventional estimator.DOI: http://dx.doi.org/10.4038/sljastats.v5i4.7785
  • 关键词:Applied Statistics; Statistics;Dual space; HDLSS; Large p; small n; Noise-reduction methodology
国家哲学社会科学文献中心版权所有