期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2014
卷号:13
期号:1
页码:321-330
DOI:10.12928/telkomnika.v13i1.1266
出版社:Universitas Ahmad Dahlan
摘要:The particle swarm system simulates the evolution of the social mechanism. In this system, the individual particle representing the potential solution flies in the multidimensional space in order to find the better or the optimal solution. But because of the search path and limited speed, it's hard to avoid local best and the premature phenomenon occurs easily. Based on the uncertain principle of the quantum mechanics, the global search ability of the quantum particle swarm optimization (QPSO) algorithms are better than the particle swarm optimization algorithm (PSO). On the basis of the fundamental quantum PSO algorithm, this article introduces the grouping optimization strategy, and meanwhile adopts the dynamic adjustment, quantum mutation and possibility acceptance criteria to improve the global search capability of the algorithm and avoid premature convergence phenomenon. By optimizing the test functions, the experimental simulation shows that the proposed algorithm has better global convergence and search ability.