期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2014
卷号:12
期号:4
页码:1132-1141
DOI:10.12928/telkomnika.v12i4.388
语种:English
出版社:Universitas Ahmad Dahlan
摘要:The emergence of an RGB-D (Red-Green-Blue-Depth) sensor which is capable of providing depth and RGB images gives hope to the computer vision community. Moreover, the use of local features began to increase over the last few years and has shown impressive results, especially in the field of object recognition. This article attempts to provide a survey of the recent technical achievements in this area of research. We review the use of local descriptors as the feature representation which is extracted from RGB-D images, in instances and category-level object recognition. We also highlight the involvement of depth images and how they can be combined with RGB images in constructing a local descriptor. Three different approaches are used in involving depth images into compact feature representation, that is classical approach using distribution based, kernel-trick, and feature learning. In this article, we show that the involvement of depth data successfully improves the accuracy of object recognition.