首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:ENHANCED NEURO-FUZZY ARCHITECTURE FOR ELECTRICAL LOAD FORECASTING
  • 本地全文:下载
  • 作者:Hany Ferdinandoa ; Felix Pasila ; Henry Kuswanto
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2010
  • 卷号:8
  • 期号:2
  • 页码:87-96
  • DOI:10.12928/telkomnika.v8i2.609
  • 语种:English
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:Previous researches about electrical load time series data forecasting showed that the result was not satisfying. This paper elaborates the enhanced neuro-fuzzy architecture for the same application. The system uses Gaussian membership function (GMF) for Takagi-Sugeno fuzzy logic system. The training algorithm is Levenberg-Marquardt algorithm to adjust the parameters in order to get better forecasting system than the previous researches. The electrical load was taken from East Java-Bali from September 2005 to August 2007. The architecture uses 4 inputs, 3 outputs with 5 GMFs. The system uses the following parameters: momentum=0.005, gamma=0.0005 and wildness factor=1.001. The MSE for short term forecasting for January to March 2007 is 0.0010, but the long term forecasting for June to August 2007 has MSE 0.0011.
国家哲学社会科学文献中心版权所有