首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:ANALISIS OBYEK DAN KARAKTERISTIK DARI MATRIKS INDIKATOR MENGGUNAKAN HYBRID ANALISIS KELAS LATEN DENGAN BIPLOT ANALISIS KOMPONEN UTAMA (BIPLOT AKU)
  • 本地全文:下载
  • 作者:Irlandia Ginanjar ; Anindya Apriliyanti Pravitasari ; Aleknaek Martuah
  • 期刊名称:MEDIA STATISTIKA
  • 印刷版ISSN:1979-3693
  • 电子版ISSN:2477-0647
  • 出版年度:2013
  • 卷号:6
  • 期号:2
  • 页码:81-90
  • 语种:English
  • 出版社:MEDIA STATISTIKA
  • 摘要:Analysis of the object and the characteristics will be much easier, efficient, and informative when based on a perceptual map, which can display objects and characteristics. Indicator matrix is a matrix where the rows represent objects and the columns is a dummy variable representing characteristics. This article writes about techniques to make perceptual map from indicator matrix, where that can provide information about the similarity between objects, the diversity of each characteristic, correlations between the characteristics, and characteristic values ​​for each object, the techniques we call Hybrid Latent Class Cluster with PCA Biplot, where Latent Class Cluster Analysis is used to transform the indicator matrix to cross section matrix, where rows represent the objects and columns represent the characteristics, the observation cells is the probability of characteristic for each object, next the cross section matrix mapped using Principal Component Analysis Biplot (PCA Biplot). Key Words : Hybrid Latent Class Cluster with PCA Biplot, Latent Class Cluster Analysis, Biplot Principal Component Analysis, Indicator Matrix.
国家哲学社会科学文献中心版权所有