首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:ON THE DUNFORD-PETTIS CRITERION FOR UNIFORMLY INTEGRABLE SETS IN GENERALIZED LEBESGUE-BOCHNER SPACE $L^1(E,(X_\vartheta,\|.\|))$
  • 作者:Lahrech, A. Ouahab, A. Benbrik, A. Mbarki, I.E. Hadi, S.
  • 期刊名称:International Journal of Differential Equations and Applications
  • 印刷版ISSN:1311-2872
  • 出版年度:2005
  • 卷号:10
  • 期号:2
  • DOI:10.12732/ijdea.v10i2.192
  • 语种:English
  • 出版社:International Journal of Differential Equations and Applications
  • 摘要:Let $(X,\|.\|,\vartheta)$ be a bitopological vector space suchthat $(X,\vartheta)$ is a topological vector space, $(X,\|.\|)$ isa reflexive normed space, the unit ball ${\cal B}_1(X)$ is closedin $(X,\vartheta)$ and sequentially complete under the topology$\vartheta$. Let $I=[\alpha,\beta]$ be an interval of $R$. Denoteby $l(X_{\vartheta},R)$ the space of all sequentially continuouslinear mapping from $X_\vartheta$ to $R$.We prove that if a subset ${\cal K}$ of$L^1(I,(X_\vartheta,\|.\|))$ is sequentially relativelycompact in$(L^1(I,(X_\vartheta,\|.\|)),\sigma(L^1(I,(X_\vartheta,\|.\|)),L^{\infty}(I,(l(X_{\vartheta},R),\|.\|_{X'}))))$,\linebreak then it is weakly uniformly integrable.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有