首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:ON THE TOPOLOGICAL DUAL OF GENERALIZED LEBESGUE-BOCHNER SPACE $L^p(E,(X_\vartheta,\|.\|))$
  • 作者:Lahrech, A. Ouahab, A. Benbrik, A. Mbarki, I.E. Hadi, S.
  • 期刊名称:International Journal of Differential Equations and Applications
  • 印刷版ISSN:1311-2872
  • 出版年度:2005
  • 卷号:10
  • 期号:2
  • DOI:10.12732/ijdea.v10i2.190
  • 语种:English
  • 出版社:International Journal of Differential Equations and Applications
  • 摘要:Let $(X,\|.\|,\vartheta)$ be a bitopological vector space such that$(X,\vartheta)$ is a topological vector space, $(X,\|.\|)$ is a reflexive normed space,the unit ball ${\cal B}_1(X)$ is closed in$(X,\vartheta)$ and sequentially complete under the topology $\vartheta$.Let $p$ and $q$ be such that $1\leq p<\infty$, $1<q\leq \infty$ and $\frac){p}$+$\frac){q}=1$. Denote by $l(X_\vartheta,R)$ the space of all sequentiallycontinuous linear mapping from $(X,\vartheta)$ to $R$. Assume that every boundedsubset of $(X,\|.\|)$ is bounded in $(X,\vartheta)$. In this case, $l(X_\vartheta,R)$is contained in $(X,\|.\|)'$.\The aim of this article is to generalize the result related to the topological dualof Lebesgue-Bochner space $L^p(E,(X,\|.\|))$ to generalizedLebesgue-Bochner space $L^p(E,(X_{\vartheta},\|.\|))$(see \cite{r1} for more details about the notion of generalized Lebesgue-Bochner spaces).Thus, we prove that the topological dual of generalized Lebesgue-Bochner space$L^p(E,(X_{\vartheta},\|.\|))$ can be identified algebraically and topologically with \pagebreakthe Lebesgue-Bochner space $L^q(E,(l(X_\vartheta,R),\|.\|_{X'}))$. In particular, ifthe topology $\vartheta$ coincides with the topology generated by the norm $\|.\|$, thenone finds the classical result $(L^p(E,(X,\|.\|)))'\simeq L^q(E,(X',\|.\|_{X'}))$.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有