首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:An Automatic Ship Detection Method Based on Local Gray-Level Gathering Characteristics in SAR Imagery
  • 本地全文:下载
  • 作者:Wang XiaoLong ; Chen CuiXia
  • 期刊名称:ELCVIA: electronic letters on computer vision and image analysis
  • 印刷版ISSN:1577-5097
  • 出版年度:2013
  • 卷号:12
  • 期号:1
  • 页码:33-41
  • 语种:Undetermined
  • 出版社:Centre de Visió per Computador
  • 摘要:This paper proposes an automatic ship detection method based on gray-level gathering characteristics of synthetic aperture radar (SAR) imagery. The method does not require any prior knowledge about ships and background observation. It uses a novel local gray-level gathering degree (LGGD) to characterize the spatial intensity distribution of SAR image, and then an adaptive-like LGGD thresholding and filtering scheme to detect ship targets. Experiments on real SAR images with varying sea clutter backgrounds and multiple targets situation have been conducted. The performance analysis confirms that the proposed method works well in various circumstances with high detection rate, fast detection speed and perfect shape preservation.
国家哲学社会科学文献中心版权所有