首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Computer vision-based limestone rock-type classification using probabilistic neural network
  • 本地全文:下载
  • 作者:Ashok Kumar Patel ; Ashok Kumar Patel ; Snehamoy Chatterjee
  • 期刊名称:Geoscience Frontiers
  • 印刷版ISSN:1674-9871
  • 出版年度:2016
  • 卷号:7
  • 期号:1
  • 页码:53-60
  • DOI:10.1016/j.gsf.2014.10.005
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract Proper quality planning of limestone raw materials is an essential job of maintaining desired feed in cement plant. Rock-type identification is an integrated part of quality planning for limestone mine. In this paper, a computer vision-based rock-type classification algorithm is proposed for fast and reliable identification without human intervention. A laboratory scale vision-based model was developed using probabilistic neural network (PNN) where color histogram features are used as input. The color image histogram-based features that include weighted mean, skewness and kurtosis features are extracted for all three color space red, green, and blue. A total nine features are used as input for the PNN classification model. The smoothing parameter for PNN model is selected judicially to develop an optimal or close to the optimum classification model. The developed PPN is validated using the test data set and results reveal that the proposed vision-based model can perform satisfactorily for classifying limestone rock-types. Overall the error of mis-classification is below 6%. When compared with other three classification algorithms, it is observed that the proposed method performs substantially better than all three classification algorithms. Graphical abstract Display Omitted Highlights • Probabilistic neural network (PNN) model using image features. • Smoothing parameter of PNN model using validation study. • Application for limestone rock type classification and validation.
  • 关键词:Supervised classification; Probabilistic neural network; Histogram based features; Smoothing parameter; Limestone;
国家哲学社会科学文献中心版权所有