首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Airway oxidative stress and inflammation markers in exhaled breath from children are linked with exposure to black carbon
  • 本地全文:下载
  • 作者:Sofie De Prins ; Sofie De Prins ; Evi Dons
  • 期刊名称:Environment International
  • 印刷版ISSN:0160-4120
  • 电子版ISSN:1873-6750
  • 出版年度:2014
  • 卷号:73
  • 页码:440-446
  • DOI:10.1016/j.envint.2014.06.017
  • 语种:English
  • 出版社:Pergamon
  • 摘要:Abstract Background The current study aimed at assessing the associations between black carbon (BC) exposure and markers for airway inflammation and oxidative stress in primary school children in a Western European urban area. Methods In 130 children aged 6–12 years old, the fraction of exhaled nitric oxide (FeNO), exhaled breath condensate (EBC) pH, 8-isoprostane and interleukin (IL)-1β were measured in two seasons. BC concentrations on the sampling day (2-h average, 8:00–10:00AM) and on the day before (24-h average) were assessed using measurements at a central monitoring site. Land use regression (LUR) models were applied to estimate weekly average BC exposure integrated for the time spent at home and at school, and seasonal average BC exposure at the home address. Associations between exposure and biomarkers were tested using linear mixed effect regression models. Next to single exposure models, models combining different BC exposure metrics were used. Results In single exposure models, an interquartile range (IQR) increase in 2-h BC (3.10μg/m3) was linked with a 5.9% (95% CI: 0.1 to 12.0%) increase in 8-isoprostane. FeNO increased by 16.7% (95% CI: 2.2 to 33.2%) per IQR increase in 24-h average BC (4.50μg/m3) and by 12.1% (95% CI: 2.5 to 22.8%) per IQR increase in weekly BC (1.73μg/m3). IL-1β was associated with weekly and seasonal (IQR=1.70μg/m3) BC with respective changes of 38.4% (95% CI: 9.0 to 75.4%) and 61.8% (95% CI: 3.5 to 153.9%) per IQR increase in BC. An IQR increase in weekly BC was linked with a lowering in EBC pH of 0.05 (95% CI: −0.10 to −0.01). All associations were observed independent of sex, age, allergy status, parental education level and meteorological conditions on the sampling day. Most of the associations remained when different BC exposure metrics were combined in multiple exposure models, after additional correction for sampling period or after exclusion of children with airway allergies. In additional analyses, FeNO was linked with 24-h PM10 levels, but the effect size was smaller than for BC. 8-Isoprostane was not linked with either 2-h or 24-h concentrations of PM2.5 or PM10. Conclusion BC exposure on the morning of sampling was associated with airway oxidative stress while 24-h and weekly exposures were linked with airway inflammation. Highlights • 130 schoolchildren aged 6–12 years old were examined in two seasons. • Airway inflammation (FeNO, EBC pH, IL-1β) and oxidative stress (EBC 8-isoprostane) • BC estimated using LUR (week, season) and measured at a central site (2-h and 24-h) • 24-h BC associated with FeNO, weekly BC associated with FeNO and IL-1β in EBC • 2-h BC exposure associated with 8-isoprostane in EBC
  • 关键词:Air pollution; Land use regression; Children; Airway inflammation; Exhaled breath condensate; Biomarkers;
国家哲学社会科学文献中心版权所有