摘要:Abstract In sentiment analysis, polarity shifting means shifting the polarity of a sentiment clue that expresses emotion, evaluation, etc. Compared with other natural language processing (NLP) tasks, extracting polarity shifting patterns from corpora is a challenging one because the methods used to shift polarity are flexible, which often invalidates fully automatic approaches. In this study, which aimed to extract polarity shifting patterns that inverted, attenuated, or canceled polarity, we used a semi-automatic approach based on sequence mining. This approach greatly reduced the cost of human annotating, while covering as many frequent polarity shifting patterns as possible. We tested this approach on different domain corpora and in different settings. Three types of experiments were performed and the experimental results were analyzed, which will be reported in this paper.