首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Performance evaluation of hyperspectral classification algorithms on AVIRIS mineral data
  • 本地全文:下载
  • 作者:Ramesh Nityanand Adep ; Ramesh Nityanand Adep ; Aswin P. Vijayan
  • 期刊名称:Perspectives in Science
  • 印刷版ISSN:2213-0209
  • 电子版ISSN:2213-0209
  • 出版年度:2016
  • 卷号:8
  • 页码:722-726
  • DOI:10.1016/j.pisc.2016.06.070
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Summary Hyperspectral sensors enable the acquisition of data with increased number of spectral bands at a higher spectral resolution. Data acquired through such sensors has been widely utilized in many remote sensing applications including mineral mapping. Development of classification algorithms is also continued along with hyperspectral sensors. Choice of an algorithm is extremely important for proper classification. To the best of our knowledge, there exists limited knowledge on the relative performance of similarity measures on a mineral classification. This study uses three statistics namely spectral discriminatory probability (SDP), spectral discriminatory entropy (SDE) and spectral discriminatory power (SDPW) to assess the performance of various similarity measures. Similarity measures chosen are Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), Jeffries–Matusita distance (JM) and their hybrid combinations of SID–SAM, SID–SCA, and JM–SAM. All the similarity measures and statistics were developed on MATLAB® platform and evaluated the same using freely available AVIRIS mineral data from U.S. Geological Survey spectral library. Analysis of statistical results collectively revealed that among the chosen algorithms SID–SAM and SID–SCA outperform the other similarity measures when tested on mineral data. This result has an important implication on choosing of appropriate similarity measure for mineral classification.
  • 关键词:Spectral discriminatory probability; Spectral discriminatory entropy; Spectral discriminatory power; Hyperspectral data;
国家哲学社会科学文献中心版权所有