首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:MRF-based image segmentation using Ant Colony System
  • 本地全文:下载
  • 作者:Salima Ouadfel ; Mohamed Batouche
  • 期刊名称:ELCVIA: electronic letters on computer vision and image analysis
  • 印刷版ISSN:1577-5097
  • 出版年度:2003
  • 卷号:2
  • 期号:1
  • 页码:12-24
  • 出版社:Centre de Visió per Computador
  • 摘要:In this paper, we propose a novel method for image segmentation that we call ACS-MRF method. ACS-MRF is a hybrid ant colony system coupled with a local search. We show how a colony of cooperating ants are able to estimate the labels field and minimize the MAP estimate. Cooperation between ants is performed by exchanging information through pheromone updating. The obtained results show the efficiency of the new algorithm, which is able to compete with other stochastic optimization methods like Simulated annealing and Genetic algorithm in terms of solution quality. keywords: clustering, image segmentation and image extraction, Markov Random Field, Optimization, Ant Colony System
  • 关键词:clustering;image segmentation and image extraction;Markov Random Field;Optimization;Ant Colony System
国家哲学社会科学文献中心版权所有