首页    期刊浏览 2025年06月27日 星期五
登录注册

文章基本信息

  • 标题:Dempster-Shafer's Basic Probability Assignment Based on Fuzzy Membership Functions
  • 本地全文:下载
  • 作者:Abdel-Ouahab Boudraa ; Ayachi Bentabet ; Fabien Salzenstein
  • 期刊名称:ELCVIA: electronic letters on computer vision and image analysis
  • 印刷版ISSN:1577-5097
  • 出版年度:2004
  • 卷号:4
  • 期号:1
  • 页码:1-10
  • 出版社:Centre de Visió per Computador
  • 摘要:In this paper, an image segmentation method based on Dempster-Shafer evidence theory is proposed. Basic probability assignment (bpa) is estimated in unsupervised way using pixels fuzzy membership degrees derived from image histogram. No assumption is made about the images data distribution. bpa is estimated at pixel level. The effectiveness of the method is demonstrated on synthetic and real images. keywords: image segmentation and image extraction, Data fusion, Basic probability assignment, Demspter-Shafer evidence
  • 关键词:image segmentation and image extraction;Data fusion;Basic probability assignment;Demspter-Shafer evidence
国家哲学社会科学文献中心版权所有