首页    期刊浏览 2025年07月10日 星期四
登录注册

文章基本信息

  • 标题:Facial Expression Recognition Using New Feature Extraction Algorithm
  • 本地全文:下载
  • 作者:Hung-Fu Huang ; Shen-Chuan Tai
  • 期刊名称:ELCVIA: electronic letters on computer vision and image analysis
  • 印刷版ISSN:1577-5097
  • 出版年度:2012
  • 卷号:11
  • 期号:1
  • 语种:English
  • 出版社:Centre de Visió per Computador
  • 摘要:This paper proposes a method for facial expression recognition. Facial feature vectors are generated from keypoint descriptors using Speeded-Up Robust Features. Each facial feature vector is then normalized and next the probability density function descriptor is generated. The distance between two probability density function descriptors is calculated using Kullback Leibler divergence. Mathematical equation is employed to select certain practicable probability density function descriptors for each grid, which are used as the initial classification. Subsequently, the corresponding weight of the class for each grid is determined using a weighted majority voting classifier. The class with the largest weight is output as the recognition result. The proposed method shows excellent performance when applied to the Japanese Female Facial Expression database.
  • 关键词:Feature Analysis;Classification and Clustering;Statistical Pattern Recognition
国家哲学社会科学文献中心版权所有