期刊名称:International Journal of Psychological Research
印刷版ISSN:2011-7922
电子版ISSN:2011-2084
出版年度:2010
卷号:3
期号:1
页码:78-87
语种:Spanish
出版社:Universidad De Sanbuenaventura
摘要:A menudo, métodos clásicos como la media, la regresión simple y múltiple, y el análisis de varianza (ANOVA), requieren que los datos se distribuyan normalmente y estén exentos de valores extremos, lo que en práctica es inusual. Los investigadores típicamente usan métodos como la detección y eliminación de valores extremos como una medida para que los datos se ajusten a los requerimientos de los métodos clásicos. En este artículo se muestran las desventajas tal práctica. En particular, se muestra que los valores extremos algunas veces pueden ser difíciles de detectar afectando así la interpretación de los resultados. Se propone entonces un método más apropiado y moderno que se basta en procedimientos robustos en donde los valores extremos no afectan los datos permitiendo una interpretación más adecuada de los mismos. Se presenta un tutorial paso a paso de un análisis descriptivo que le permita a los investigadores hacer una revisión inicial del método más apropiado para analizar los datos. Luego, se compara el ANOVA y la regresión tradicional con su versión robusta para discutir sus ventajas y desventajas. Finalmente, se presentan diagramas de los residuales de los análisis y que pueden usarse para determinar si las condiciones de aplicación de los análisis son apropiadas. Se usan ejemplos tomados de la investigación en psicología para ilustrar los argumentos acá expuestos, y se presenta un código en lenguaje R para que el lector use las técnicas acá presentadas.
其他摘要:After much exertion and care to run an experiment in social science, the analysis of data should not be ruined by an improper analysis. Often, classical methods, like the mean, the usual simple and multiple linear regressions, and the ANOVA require normality and absence of outliers, which rarely occurs in data coming from experiments. To palliate to this problem, researchers often use some ad-hoc methods like the detection and deletion of outliers. In this tutorial, we will show the shortcomings of such an approach. In particular, we will show that outliers can sometimes be very difficult to detect and that the full inferential procedure is somewhat distorted by such a procedure. A more appropriate and modern approach is to use a robust procedure that provides estimation, inference and testing that are not influenced by outlying observations but describes correctly the structure for the bulk of the data. It can also give diagnostic of the distance of any point or subject relative to the central tendency. Robust procedures can also be viewed as methods to check the appropriateness of the classical methods. To provide a step-by-step tutorial, we present descriptive analyses that allow researchers to make an initial check on the conditions of application of the data. Next, we compare classical and robust alternatives to ANOVA and regression and discuss their advantages and disadvantages. Finally, we present indices and plots that are based on the residuals of the analysis and can be used to determine if the conditions of applications of the analyses are respected. Examples on data from psychological research illustrate each of these points and for each analysis and plot, R code is provided to allow the readers to apply the techniques presented throughout the article.