首页    期刊浏览 2025年12月21日 星期日
登录注册

文章基本信息

  • 标题:An unconstrained approach for solving low rank SDP relaxations of {-1, 1} quadratic problems
  • 本地全文:下载
  • 作者:Luigi Grippo ; Laura Palagi ; Mauro Piacentini
  • 期刊名称:Department of Computer and System Sciences Antonio Ruberti Technical Reports
  • 印刷版ISSN:2035-5750
  • 出版年度:2009
  • 卷号:1
  • 期号:13
  • 出版社:Department of Computer and System Sciences Antonio Ruberti. Sapienza, Università di Roma
  • 摘要:We consider low-rank semidefinite programming (LRSDP) relaxations of {-1, 1} quadratic problems that can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function and we define an efficient and globally convergent algorithm for finding critical points of the LRSDP problem. Finally, we test our code on an extended set of instances of the Max-Cut problem and we report comparisons with other existing codes
  • 关键词:semidefinite programming;low rank factorization;boolean quadratic problem;nonlinear programming
国家哲学社会科学文献中心版权所有