摘要:Handwritten signature is broadly utilized as personal verification in financial institutions ensures the necessity for a robust automatic signature verification tool. This tool aims to reduce fraud in all related financial transactions’ sectors. This paper proposes an online, robust, and automatic signature verification technique using the recent advances in image processing and machine learning. Once the image of a handwritten signature for a customer is captured, several pre-processing steps are performed on it including filtration and detection of the signature edges. Afterwards, a feature extraction process is applied on the image to extract Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT) features. Finally, a verification process is developed and applied to compare the extracted image features with those stored in the database for the specified customer. Results indicate high accuracy, simplicity, and rapidity of the developed technique, which are the main criteria to judge a signature verification tool in banking and other financial institutions.