摘要:A spatial optimization framework has been developed to help urban areas mitigate climate risks such as flooding and to curb resource use and greenhouse gas emissions. Measures required to address these issues often conflict with each other, for example more compact cities typically use less energy for transportation but increase runoff from high intensity rainfall events. Balancing potential trade-offs and maximizing synergies between these risks and vulnerabilities is therefore a multi-dimensional, spatial, challenge for urban planners. A spatial optimization framework is used to optimize the following objectives to minimize: (1) risk from heat waves; (2) risk from flooding; (3) the distance of new development to the current central business district; (4) urban sprawl to prevent increased travel costs; and (5) the development of green-space. The framework is applied to a real case study in the North East of England. From an initial configuration, alternative spatial configurations are tested against these objectives and the spatial pattern is evolved over successive generations to search for spatially optimum configurations. The resulting solutions provide planners with a range of robust spatial development patterns known to be best trade-offs which mitigate conflicts between risk and sustainability objectives.