首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Tidal inertial waves in differentially rotating convective envelopes of low-mass stars - I. Free oscillation modes
  • 其他标题:I. Free oscillation modes
  • 本地全文:下载
  • 作者:M. Guenel ; M. Guenel ; C. Baruteau
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2016
  • 卷号:589
  • 页码:1-17
  • DOI:10.1051/0004-6361/201527621
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context. Star–planet tidal interactions may result in the excitation of inertial waves in the convective region of stars. In low-mass stars, their dissipation plays a prominent role in the long-term orbital evolution of short-period planets. Turbulent convection can sustain differential rotation in their envelopes with an equatorial acceleration (as in the Sun) or deceleration, which can modify the propagation properties of the waves. Aims. We explore in this first paper the general propagation properties of free linear inertial waves in a differentially rotating homogeneous fluid inside a spherical shell. We assume that the angular velocity background flow depends on the latitudinal coordinate alone, close to what is expected in the external convective envelope of low-mass stars. Methods. We use an analytical approach in the inviscid case to get the dispersion relation, from which we compute the characteristic trajectories along which energy propagates. This allows us to study the existence of attractor cycles and infer the different families of inertial modes. We also use high-resolution numerical calculations based on a spectral method for the viscous problem. Results. We find that modes that propagate in the whole shell (D modes) behave the same way as with solid-body rotation. However, another family of inertial modes exists (DT modes), which can only propagate in a restricted part of the convective zone. Our study shows that they are less common than D modes and that the characteristic rays and shear layers often focus towards a wedge – or point-like attractor. More importantly, we find that for non-axisymmetric oscillation modes, shear layers may cross a corotation resonance with a local accumulation of kinetic energy. Their damping rate scales very differently from the value we obtain for standard D modes, and we show an example where it is independent of viscosity (Ekman number) in the astrophysical regime in which it is small.
  • 关键词:hydrodynamics;waves;planet-star interactions;stars: rotation
国家哲学社会科学文献中心版权所有