首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Merged or monolithic? Using machine-learning to reconstruct the dynamical history of simulated star clusters
  • 本地全文:下载
  • 作者:Mario Pasquato ; Mario Pasquato ; Chul Chung
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2016
  • 卷号:589
  • 页码:1-7
  • DOI:10.1051/0004-6361/201425181
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context. Machine-learning (ML) solves problems by learning patterns from data with limited or no human guidance. In astronomy, ML is mainly applied to large observational datasets, e.g. for morphological galaxy classification. Aims. We apply ML to gravitational N-body simulations of star clusters that are either formed by merging two progenitors or evolved in isolation, planning to later identify globular clusters (GCs) that may have a history of merging from observational data. Methods. We create mock-observations from simulated GCs, from which we measure a set of parameters (also called features in the machine-learning field). After carrying out dimensionality reduction on the feature space, the resulting datapoints are fed in to various classification algorithms. Using repeated random subsampling validation, we check whether the groups identified by the algorithms correspond to the underlying physical distinction between mergers and monolithically evolved simulations. Results. The three algorithms we considered (C5.0 trees, k-nearest neighbour, and support-vector machines) all achieve a test misclassification rate of about 10% without parameter tuning, with support-vector machines slightly outperforming the others. The first principal component of feature space correlates with cluster concentration. If we exclude it from the regression, the performance of the algorithms is only slightly reduced.
  • 关键词:globular clusters: general;Galaxy: evolution;methods: statistical;methods: numerical
国家哲学社会科学文献中心版权所有