首页    期刊浏览 2025年06月29日 星期日
登录注册

文章基本信息

  • 标题:Cosmological constraints with weak-lensing peak counts and second-order statistics in a large-field survey
  • 本地全文:下载
  • 作者:Austin Peel ; Austin Peel ; Chieh-An Lin
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2017
  • 卷号:599
  • 页码:1-12
  • DOI:10.1051/0004-6361/201629928
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Peak statistics in weak-lensing maps access the non-Gaussian information contained in the large-scale distribution of matter in the Universe. They are therefore a promising complementary probe to two-point and higher-order statistics to constrain our cosmological models. Next-generation galaxy surveys, with their advanced optics and large areas, will measure the cosmic weak-lensing signal with unprecedented precision. To prepare for these anticipated data sets, we assess the constraining power of peak counts in a simulated Euclid-like survey on the cosmological parameters Ωm, σ8, and w0de. In particular, we study how Camelus, a fast stochastic model for predicting peaks, can be applied to such large surveys. The algorithm avoids the need for time-costly N-body simulations, and its stochastic approach provides full PDF information of observables. Considering peaks with a signal-to-noise ratio ≥ 1, we measure the abundance histogram in a mock shear catalogue of approximately 5000 deg2 using a multiscale mass-map filtering technique. We constrain the parameters of the mock survey using Camelus combined with approximate Bayesian computation, a robust likelihood-free inference algorithm. Peak statistics yield a tight but significantly biased constraint in the σ8–Ωm plane, as measured by the width ΔΣ8 of the 1σ contour. We find Σ8 = σ8(Ωm/ 0.27)α = 0.77-0.05+0.06 with α = 0.75 for a flat ΛCDM model. The strong bias indicates the need to better understand and control the model systematics before applying it to a real survey of this size or larger. We perform a calibration of the model and compare results to those from the two-point correlation functions ξ± measured on the same field. We calibrate the ξ± result as well, since its contours are also biased, although not as severely as for peaks. In this case, we find for peaks Σ8 = 0.76-0.03+0.02 with α = 0.65, while for the combined ξ+ and ξ− statistics the values are Σ8 = 0.76-0.01+0.02 and α = 0.70. We conclude that the constraining power can therefore be comparable between the two weak-lensing observables in large-field surveys. Furthermore, the tilt in the σ8–Ωm degeneracy direction for peaks with respect to that of ξ± suggests that a combined analysis would yield tighter constraints than either measure alone. As expected, w0de cannot be well constrained without a tomographic analysis, but its degeneracy directions with the other two varied parameters are still clear for both peaks and ξ±.
  • 关键词:gravitational lensing: weak;large-scale structure of Universe;cosmological parameters;methods: statistical
国家哲学社会科学文献中心版权所有