首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Galactic Pal-eontology: abundance analysis of the disrupting globular cluster Palomar 5
  • 本地全文:下载
  • 作者:Andreas Koch ; Andreas Koch ; Patrick Côté
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2017
  • 卷号:601
  • 页码:1-9
  • DOI:10.1051/0004-6361/201629872
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:We present a chemical abundance analysis of the tidally disrupted globular cluster (GC) Palomar 5. By co-adding high-resolution spectra of 15 member stars from the cluster’s main body, taken at low signal-to-noise with the Keck/HIRES spectrograph, we were able to measure integrated abundance ratios of 24 species of 20 elements including all major nucleosynthetic channels (namely the light element Na; α-elements Mg, Si, Ca, Ti; Fe-peak and heavy elements Sc, V, Cr, Mn, Co, Ni, Cu, Zn; and the neutron-capture elements Y, Zr, Ba, La, Nd, Sm, Eu). The mean metallicity of −1.56 ± 0.02 ± 0.06 dex (statistical and systematic errors) agrees well with the values from individual, low-resolution measurements of individual stars, but it is lower than previous high-resolution results of a small number of stars in the literature. Comparison with Galactic halo stars and other disrupted and unperturbed GCs renders Pal 5 a typical representative of the Milky Way halo population, as has been noted before, emphasizing that the early chemical evolution of such clusters is decoupled from their later dynamical history. We also performed a test as to the detectability of light element variations in this co-added abundance analysis technique and found that this approach is not sensitive even in the presence of a broad range in sodium of ~0.6 dex, a value typically found in the old halo GCs. Thus, while methods of determining the global abundance patterns of such objects are well suited to study their overall enrichment histories, chemical distinctions of their multiple stellar populations is still best obtained from measurements of individual stars.
  • 关键词:techniques: spectroscopic;stars: abundances;Galaxy: abundances;Galaxy: evolution;Galaxy: halo;globular clusters: individual: Palomar 5
国家哲学社会科学文献中心版权所有