首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Set-based Experiment Design for Model Discrimination Using Bilevel Optimization
  • 本地全文:下载
  • 作者:Nadine Rudolph ; Stefan Streif ; Rolf Findeisen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:26
  • 页码:295-299
  • DOI:10.1016/j.ifacol.2016.12.142
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Experiment design can be used to discriminate between valid and invalid models. This task is not trivial as models are typically nonlinear and the kinetic parameters and initial conditions are uncertain. In this work, we propose a set-based and bilevel optimization approach to design an input sequence such that nonlinear models with uncertainties can be discriminated with guarantees based on a single measurement. In the outer program of the bilevel optimization program, an input minimizing a given norm and satisfying input constraints is determined. For the determined input sequence, the inner program certifies that the reachable output sets of the models are nonoverlapping at a chosen time-point, thus guaranteeing model discrimination. To be able to provide guarantees despite the nonconvexities of the reachable sets, we convexify the inner program. We demonstrate our approach at the chemostatic signaling system of Dictyostelium discoideum.
  • 关键词:set-based approachconvex optimizationexperiment designmodel discriminationbilevel optimization
国家哲学社会科学文献中心版权所有