首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Merging Kalman Filtering and Zonotopic State Bounding for Robust Fault Detection under Noisy Environment
  • 本地全文:下载
  • 作者:C. Combastel
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:21
  • 页码:289-295
  • DOI:10.1016/j.ifacol.2015.09.542
  • 语种:English
  • 出版社:Elsevier
  • 摘要:A joint Zonotopic and Gaussian Kalman Filter (ZGKF) is proposed for the robust fault detection of discrete-time LTV systems simultaneously subject to bounded disturbances and Gaussian noises. Given a maximal probability of false alarms, a detection test is developed and shown to merge the usually mutually exclusive benefits granted by set-membership techniques (robustness to worst-case within specified bounds, domain computations) and stochastic approaches (taking noise distribution into account, probabilistic evaluation of tests). The computations remain explicit and can be efficiently implemented. A numerical example illustrates the improved tradeoff between sensitivity to faults and robustness to disturbances/noises.
  • 关键词:Bounded disturbancesRandom noiseRobust estimationFault detectionUncertain dynamic systemsKalman filtersIntervalsSetsZonotopesGaussian processes
国家哲学社会科学文献中心版权所有