首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Autoregressive model-based boiling detection in a Liquid Metal Fast Breeder Reactor
  • 本地全文:下载
  • 作者:Issa Cherif Geraldo ; Tanmoy Bose ; Komi Midzodzi Pekpe
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:21
  • 页码:566-570
  • DOI:10.1016/j.ifacol.2015.09.586
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper presents a new approach for acoustic detection of sodium boiling in a Liquid Metal Fast Breeder Reactor (LMFBR) based on Autoregressive (AR) models. The AR models are estimated on a sliding window and classified into boiling or non-boiling models by comparing the on-line estimated values of their components to the predictions of their components from the environment parameters using linear regression. In order to avoid false alarms the proposed approach takes into account operating mode information. Promising results are obtained on the background noise data collected from the French Phenix nuclear power plant provided by the French Commission of Atomic and Alternative Energies (CEA).
  • 关键词:Fault detectionNuclear plantsAutoregressive modelsRegression analysisStatistical analysisMachine learning
国家哲学社会科学文献中心版权所有