摘要:Abstract This paper is concerned with the challenge of developing a fault-tolerant control (FTC) scheme for an inter-connected decentralised system in which the individual subsystems are linear but the inter-connections are non-linear functions of the subsystem states and controls. It is assumed that the subsystems are disturbed by matched faults. The purpose of the decentralised control is to de-couple the subsystems with global and local control objectives as well as de-coupling the effects of uncertainties and faults. The paper describes the LMI-based sliding mode control (SMC) design, including Lemmas and proofs were appropriate and the main properties of the design approach, control objectives, stability, fault-tolerance and robustness are outlined. Results are given to illustrate the properties of the control design, meeting the desired objectives of stability, local and global control performance, subsystem de-coupling and fault-tolerance for a 3 electrical machine interconnected system with non-linear inter-connections that are functions of machine rotor angle deviations.