首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Sensor Fault Detection and Isolation of an Industrial Gas Turbine Using Partial Kernel PCA
  • 本地全文:下载
  • 作者:Mania Navi ; Mania Navi ; Mohammad Reza Davoodi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:21
  • 页码:1389-1396
  • DOI:10.1016/j.ifacol.2015.09.719
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract In this paper, partial kernel principal component analysis (PKPCA) is studied for sensor fault detection and isolation of an aeroderivative industrial gas turbine. Principal component analysis (PCA) is an effective tool for process monitoring task, however it can achieve acceptable results only for linear processes. In the case of nonlinear processes such as gas turbines, kernel PCA approach can be used which leads to more accurate health monitoring. In order to achieve fault isolation, partial KPCA is proposed where the parity relation concept is used to generate a set of residual signals. The simulation studies demonstrate that using the proposed methodology, the occurrence of sensor faults in an industrial gas turbine can be effectively detected and isolated.
  • 关键词:KeywordsFault detection and isolationAeroderivative gas turbinePartial kernel principal component analysis (PKPCA)
国家哲学社会科学文献中心版权所有