首页    期刊浏览 2025年02月25日 星期二
登录注册

文章基本信息

  • 标题:Process Disturbance Cause & Effect Analysis Using Bayesian Networks
  • 本地全文:下载
  • 作者:David Leng ; David Leng ; Nina F. Thornhill
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:21
  • 页码:1457-1464
  • DOI:10.1016/j.ifacol.2015.09.730
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract Process disturbances can propagate over entire plants and it can be difficult to locate their root causes from observed effects. Bayesian Networks offer a way to represent unit operations, processes and whole plants as probabilistic models which can be used to infer and rank likely causes from observed effects. This paper presents a methodology to use deterministic steady-state process models to derive Bayesian Networks based on alarm event detection. An example heat recovery network is used to illustrate the model building and inferential procedures.
  • 关键词:KeywordsAlarmConditional ProbabilityDeterministicDisturbanceNetworkProcessRoot Cause
国家哲学社会科学文献中心版权所有