摘要:Abstract Process disturbances can propagate over entire plants and it can be difficult to locate their root causes from observed effects. Bayesian Networks offer a way to represent unit operations, processes and whole plants as probabilistic models which can be used to infer and rank likely causes from observed effects. This paper presents a methodology to use deterministic steady-state process models to derive Bayesian Networks based on alarm event detection. An example heat recovery network is used to illustrate the model building and inferential procedures.
关键词:KeywordsAlarmConditional ProbabilityDeterministicDisturbanceNetworkProcessRoot Cause