首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Generating Low-dimensional, Nonlinear Process Representations by Ordered Features Õ
  • 本地全文:下载
  • 作者:Susanne Fischer ; Susanne Fischer ; Onno Hensgen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:3
  • 页码:1037-1042
  • DOI:10.1016/j.ifacol.2015.06.220
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract Reduced models of manufacturing processes are essential for online control of these processes. By generating a low-dimensional, nonlinear process representation, we extract process state features, ordered by relevance, that can be used for the construction of a reduced model. In this paper, we propose new approaches for nonlinear dimensionality reduction based on sequential bottleneck neural networks. The extracted features represent the state in a low-dimensional nonlinear subspace of the original process representation space. The feasibility of these approaches is shown with data of a numerically simulated deep drawing process.
  • 关键词:KeywordsNonlinear dimensionality reductionneural networksdata compressionreductionregressionmanufacturing processes
国家哲学社会科学文献中心版权所有