首页    期刊浏览 2025年04月30日 星期三
登录注册

文章基本信息

  • 标题:Forecasting Supply Chain Demand by Clustering Customers
  • 本地全文:下载
  • 作者:Paul W. Murray ; Paul W. Murray ; Bruno Agard
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2015
  • 卷号:48
  • 期号:3
  • 页码:1834-1839
  • DOI:10.1016/j.ifacol.2015.06.353
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract Demand forecasts are essential for managing supply chain activities but are difficult to create when collaborative information is absent. Many traditional and advanced forecasting tools are available, but applying them to a large number of customers is not manageable. In our research, we use data mining techniques to identify segments of customers with similar demand behaviors. Historical usage is used to cluster customers with similar demands. Once customer segments are identified, a manageable number of forecasting models can be built to represent the customers within the segments.
  • 关键词:KeywordsData ModelsExogenous variablesForecastingSegmentationVendor Managed Inventory
国家哲学社会科学文献中心版权所有