期刊名称:AKCE International Journal of Graphs and Combinatorics
印刷版ISSN:0972-8600
出版年度:2015
卷号:12
期号:1
页码:54-58
DOI:10.1016/j.akcej.2015.06.008
语种:English
出版社:Elsevier
摘要:Let G = ( V , E ) be a simple graph and H be a subgraph of G . G admits an H -covering, if every edge in E ( G ) belongs to at least one subgraph of G that is isomorphic to H . An ( a , d ) - H -antimagic total labeling of G is bijection f : V ( G ) ∪ E ( G ) → { 1 , 2 , 3 , … , | V ( G ) | + | E ( G ) | } such that for all subgraphs H ′ of G isomorphic to H , the H ′ weights w ( H ′ ) = ∑ v ∈ V ( H ′ ) f ( v ) + ∑ e ∈ E ( H ′ ) f ( e ) constitute an arithmetic progression a , a + d , a + 2 d , … , a + ( n − 1 ) d where a and d are positive integers and n is the number of subgraphs of G isomorphic to H . Additionally, the labeling f is called a super ( a , d ) - H -antimagic total labeling if f ( V ( G ) ) = { 1 , 2 , 3 , … , | V ( G ) | } . In this paper we study super ( a , d ) - P h - antimagic total labeling of the Star.
关键词:Keywordsen H -CoveringSuper ( a , d ) - H -antimagicStar