期刊名称:AKCE International Journal of Graphs and Combinatorics
印刷版ISSN:0972-8600
出版年度:2017
卷号:14
期号:1
页码:18-26
DOI:10.1016/j.akcej.2016.11.007
语种:English
出版社:Elsevier
摘要:Abstract Let R be a commutative ring and I be a non-zero ideal of R . Let R ⋈ I be the subring of R × R consisting of the elements ( r , r + i ) for r ∈ R and i ∈ I . In this paper we characterize all isomorphism classes of finite commutative rings R with identity and ideal I such that Γ ( R ⋈ I ) is planar. We determine the number of vertices of Γ ( R ⋈ I ) , a necessary and sufficient condition for the graph Γ ( R ⋈ I ) to be outerplanar and the domination number of Γ ( R ⋈ I ) .