首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Frequentist and Bayesian Lasso Techniques for Parameter Selection in Nonlinearly Parameterized Models
  • 本地全文:下载
  • 作者:Kayla D. Coleman ; Kayla D. Coleman ; Kathleen Schmidt
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:18
  • 页码:416-421
  • DOI:10.1016/j.ifacol.2016.10.201
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract: In this paper, we discuss the use of frequentist and Bayesian lasso (least absolute shrinkage and selection operator) techniques for parameter selection in nonlinearly parameterized models employed for control design. This is necessary to isolate the subset of identifiable or influential parameters, which can be uniquely calibrated from experimental data. We survey the performance of existing algorithms and present a new Bayesian lasso implementation based on the Delayed Rejection Adaptive Metropolis (DRAM) algorithm.
  • 关键词:KeywordsDRAMparameter selectionregularizationregressionidentifiability
国家哲学社会科学文献中心版权所有