首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Navigating with highly precise odometry and noisy GPS: a case study * * This work is supported by the company Safran.
  • 本地全文:下载
  • 作者:A. Barrau ; A. Barrau ; S. Bonnabel
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:18
  • 页码:618-623
  • DOI:10.1016/j.ifacol.2016.10.234
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Abstract: For linear systems, the Kalman filter perfectly handles rank deficiencies in the process noise covariance matrix, i.e., deterministic information. Yet, in a nonlinear setting this poses great challenges to the extended Kalman filter (EKF). In this paper we consider a simplified nonlinear car model with deterministic dynamics, i.e., perfect odometry, and noisy position measurements. Simulations evidence the EKF, when used as a nonlinear observer, 1- fails to correctly encode the physical implications of the deterministic dynamics 2- fails to converge even for arbitrarily small initial estimation errors. On the other hand, the invariant (I)EKF, a variant of the EKF that accounts for the symmetries of the problem 1- correctly encodes the physical implications of the deterministic information 2-is mathematically proved to (almost) globally converge, with explicit convergence rates, whereas the EKF does not even locally converge in our simulations. This study more generally suggests the IEKF is way more natural than the EKF, for high precision navigation purposes.
  • 关键词:KeywordsEstimationKalman filteringnonlinear systemsLie groupsnavigation
国家哲学社会科学文献中心版权所有