摘要:Abstract: We show that existence of a non-coercive Lyapunov function is sufficient for uniform global asymptotic stability (UGAS) of infinite-dimensional systems with external disturbances provided an additional mild assumption is fulfilled. For UGAS infinite-dimensional systems with external disturbances we derive a novel ‘integral’ construction of non-coercive Lipschitz continuous Lyapunov functions. Finally, converse Lyapunov theorems are used in order to prove Lyapunov characterizations of input-to-state stability of infinite-dimensional systems.
关键词:Keywordsnonlinear control systemsinfinite-dimensional systemsinput-to-state stabilityLyapunov methods