首页    期刊浏览 2025年07月14日 星期一
登录注册

文章基本信息

  • 标题:A Note on Occupation Times of Stationary Processes
  • 本地全文:下载
  • 作者:Kozlova, Marina ; Salminen, Paavo
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2005
  • 卷号:10
  • 页码:94-104
  • DOI:10.1214/ECP.v10-1138
  • 出版社:Electronic Communications in Probability
  • 摘要:Consider a real valued stationary process $X={X_s:, s\in R}$. For a fixed $t\in R$ and a set $D$ in the state space of $X$, let $g_t$ and $d_t$ denote the starting and the ending time, respectively, of an excursion from and to $D$ (straddling $t$). Introduce also the occupation times $I^+_t$ and $I^-_t$ above and below, respectively, the observed level at time $t$ during such an excursion. In this note we show that the pairs $(I^+_t, I^-_t)$ and $(t-g_t, d_t-t)$ are identically distributed. This somewhat curious property is, in fact, seen to be a fairly simple consequence of the known general uniform sojourn law which implies that conditionally on $I^+_t + I^-_t = v$ the variable $I^+_t$ (and also $I^-_t$) is uniformly distributed on $(0,v)$. We also particularize to the stationary diffusion case and show, e.g., that the distribution of $I^-_t+I^+_t$ is a mixture of gamma distributions.
国家哲学社会科学文献中心版权所有