首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Maximal Arithmetic Progressions in Random Subsets
  • 本地全文:下载
  • 作者:Benjamini, Itai ; Yadin, Ariel ; Zeitouni, Ofer
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2007
  • 卷号:12
  • 页码:365-376
  • DOI:10.1214/ECP.v12-1321
  • 出版社:Electronic Communications in Probability
  • 摘要:Let $U(N)$ denote the maximal length of arithmetic progressions in a random uniform subset of $\{0,1\}^N$. By an application of the Chen-Stein method, we show that $U(N)- 2 \log(N)/\log(2)$ converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length $W(N)$ of arithmetic progressions (mod $N$). When considered in the natural way on a common probability space, we observe that $U(N)/\log(N)$ converges almost surely to $2/\log(2)$, while $W(N)/\log(N)$ does not converge almost surely (and in particular, $\limsup W(N)/\log(N)$ is at least $3/\log(2)$).An Erratum is available in ECP volume 17 paper number 18.
  • 关键词:arithmetic progression; random subset; Chen-Stein method; dependency graph; extreme type limit distribution;60C05
国家哲学社会科学文献中心版权所有