首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Berry-Esseen Bounds for Projections of Coordinate Symmetric Random Vectors
  • 本地全文:下载
  • 作者:Goldstein, Larry ; Shao, Qi-Man
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2009
  • 卷号:14
  • 页码:474-485
  • DOI:10.1214/ECP.v14-1502
  • 出版社:Electronic Communications in Probability
  • 摘要:For a coordinate symmetric random vector $(Y_1,\ldots,Y_n)={\bf Y} \in \mathbb{R}^n$, that is, one satisfying $(Y_1,\ldots,Y_n)=_d(e_1Y_1,\ldots,e_nY_n)$ for all $(e_1,\ldots,e_n) \in \{-1,1\}^n$, for which $P(Y_i=0)=0$ for all $i=1,2,\ldots,n$, the following Berry Esseen bound to the cumulative standard normal $\Phi$ for the standardized projection $W_\theta=Y_\theta/v_\theta$ of ${\bf Y}$ holds: $$ \sup_{x \in \mathbb{R}}|P(W_\theta \leq x) - \Phi(x)| \leq 2 \sum_{i=1}^n |\theta_i|^3 E| X_i|^3 + 8.4 E(V_\theta^2-1)^2, $$ where $Y_\theta=\theta \cdot {\bf Y}$ is the projection of ${\bf Y}$ in direction $\theta \in \mathbb{R}^n$ with $||\theta||=1$, $v_\theta=\sqrt{\mbox{Var}(Y_\theta)},X_i=|Y_i|/v_\theta$ and $V_\theta=\sum_{i=1}^n \theta_i^2 X_i^2$. As such coordinate symmetry arises in the study of projections of vectors chosen uniformly from the surface of convex bodies which have symmetries with respect to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors which includes cone measure ${\cal C}_p^n$ on the $\ell_p^n$ sphere as a special case, resulting in a bound of order $\sum_{i=1}^n |\theta_i|^3$.
国家哲学社会科学文献中心版权所有