首页    期刊浏览 2025年07月16日 星期三
登录注册

文章基本信息

  • 标题:Consistent Minimal Displacement of Branching Random Walks
  • 本地全文:下载
  • 作者:Fang, Ming ; Zeitouni, Ofer
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2010
  • 卷号:15
  • 页码:106-118
  • DOI:10.1214/ECP.v15-1533
  • 出版社:Electronic Communications in Probability
  • 摘要:Let $\mathbb{T}$ denote a rooted $b$-ary tree and let $\{S_v\}_{v\in \mathbb{T}}$ denote a branching random walk indexed by the vertices of the tree, where the increments are i.i.d. and possess a logarithmic moment generating function $\Lambda(\cdot)$. Let $m_n$ denote the minimum of the variables $S_v$ over all vertices at the $n$th generation, denoted by $\mathbb{D}_n$. Under mild conditions, $m_n/n$ converges almost surely to a constant, which for convenience may be taken to be $0$. With $\bar S_v=\max\{S_w: w$ is on the geodesic connecting the root to $v \}$, define $L_n=\min_{v\in \mathbb{D}_n} \bar S_v$. We prove that $L_n/n^{1/3}$ converges almost surely to an explicit constant $l_0$. This answers a question of Hu and Shi.
  • 关键词:Branching Random Walk; Consistent Minimal Displacement;60G50; 60J80
国家哲学社会科学文献中心版权所有