摘要:Using the framework of random walks in random scenery, Cohen and Samorodnitsky (2006) introduced a family of symmetric $\alpha$-stable motions called local time fractional stable motions. When $\alpha=2$, these processes are precisely fractional Brownian motions with $1/2 < H < 1$. Motivated by random walks in alternating scenery, we find a complementary family of symmetric $\alpha$-stable motions which we call indicator fractional stable motions. These processes are complementary to local time fractional stable motions in that when $\alpha=2$, one gets fractional Brownian motions with $0 < H < 1/2$.
关键词:fractional Brownian motion; random walk in random scenery; random reward schema; local time fractional stable motion; self-similar process; stable process;60G52; 60G22; 60G18