首页    期刊浏览 2025年12月25日 星期四
登录注册

文章基本信息

  • 标题:Marked metric measure spaces
  • 本地全文:下载
  • 作者:Depperschmidt, Andrej ; Greven, Andreas ; Pfaffelhuber, Peter
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2011
  • 卷号:16
  • 页码:174-188
  • DOI:10.1214/ECP.v16-1615
  • 出版社:Electronic Communications in Probability
  • 摘要:A marked metric measure space (mmm-space) is a triple $(X,r,μ)$, where $(X,r)$ is a complete and separable metric space and $μ$ is a probability measure on $X \times I$ for some Polish space $I$ of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed $I$. It arises as a state space in the construction of Markov processes which take values in random graphs, e.g. tree-valued dynamics describing randomly evolving genealogical structures in population models. We derive here the topological properties of the space of mmm-spaces needed to study convergence in distribution of random mmm-spaces. Extending the notion of the Gromov-weak topology introduced in (Greven, Pfaffelhuber and Winter, 2009), we define the marked Gromov-weak topology, which turns the set of mmm-spaces into a Polish space. We give a characterization of tightness for families of distributions of random mmm-spaces and identify a convergence determining algebra of functions, called polynomials.
  • 关键词:Metric measure space, Gromov metric triples, Gromov- weak topology, Prohorov metric, Population model;60B10, 05C80 (Primary) 60B05, 60B12 (Secondary)
国家哲学社会科学文献中心版权所有