首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Reconstruction on Trees: Exponential Moment Bounds for Linear Estimators
  • 本地全文:下载
  • 作者:Peres, Yuval ; Roch, Sebastien
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2011
  • 卷号:16
  • 页码:251-261
  • DOI:10.1214/ECP.v16-1630
  • 出版社:Electronic Communications in Probability
  • 摘要:Consider a Markov chain $(\xi_v)_{v \in V} \in [k]^V$ on the infinite $b$-ary tree $T = (V,E)$ with irreducible edge transition matrix $M$, where $b \geq 2$, $k \geq 2$ and $[k] = \{1,\ldots,k\}$. We denote by $L_n$ the level-$n$ vertices of $T$. Assume $M$ has a real second-largest (in absolute value) eigenvalue $\lambda$ with corresponding real eigenvector $\nu \neq 0$. Letting $\sigma_v = \nu_{\xi_v}$, we consider the following root-state estimator, which was introduced by Mossel and Peres (2003) in the context of the ``recontruction problem'' on trees: \begin{equation*} S_n = (b\lambda)^{-n} \sum_{x\in L_n} \sigma_x. \end{equation*} As noted by Mossel and Peres, when $b\lambda^2 > 1$ (the so-called Kesten-Stigum reconstruction phase) the quantity $S_n$ has uniformly bounded variance. Here, we give bounds on the moment-generating functions of $S_n$ and $S_n^2$ when $b\lambda^2 > 1$. Our results have implications for the inference of evolutionary trees.
  • 关键词:Markov chains on trees, reconstruction problem, Kesten-Stigum bound, phylogenetic reconstruction;60J80, 92D15
国家哲学社会科学文献中心版权所有