首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:On the size of the largest cluster in 2D critical percolation
  • 本地全文:下载
  • 作者:van den Berg, Jacob ; Conijn, Rene
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2012
  • 卷号:17
  • 页码:1-13
  • DOI:10.1214/ECP.v17-2263
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We consider (near-)critical percolation on the square lattice. Let $\mathcal{M}_{n}$ be the size of the largest open cluster contained in the box $[-n,n]^2$, and let $\pi(n)$ be the probability that there is an open path from $O$ to the boundary of the box. It is well-known that for all $0< a < b$ the probability that $\mathcal{M}_{n}$ is smaller than $a n^2 \pi(n)$ and the probability that $\mathcal{M}_{n}$ is larger than $b n^2 \pi(n)$ are bounded away from $0$ as $n \rightarrow \infty$. It is a natural question, which arises for instance in the study of so-called frozen-percolation processes, if a similar result holds for the probability that $\mathcal{M}_{n}$ is {\em between} $a n^2 \pi(n)$ and $b n^2 \pi(n)$. By a suitable partition of the box, and a careful construction involving the building blocks, we show that the answer to this question is affirmative. The `sublinearity' of $1/\pi(n)$ appears to be essential for the argument.
  • 关键词:Critical percolation; Cluster size;60K35; 60C05
国家哲学社会科学文献中心版权所有