首页    期刊浏览 2025年07月04日 星期五
登录注册

文章基本信息

  • 标题:Logarithmic Sobolev and Poincaré inequalities for the circular Cauchy distribution
  • 本地全文:下载
  • 作者:Ma, Yutao ; Zhang, Zhengliang
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2014
  • 卷号:19
  • 页码:1-9
  • DOI:10.1214/ECP.v19-3071
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:In this paper, consider the circular Cauchy distribution $\mu_x$ on the unit circle $S$ with index $0\le |x|<1$, we study the spectral gap and the optimal logarithmic Sobolev constant for $\mu_x$, denoted respectively as $\lambda_1(\mu_x)$ and $C_{\mathrm{LS}}(\mu_x).$ We prove that $\frac){1+|x|}\le \lambda_1(\mu_x)\le 1$ while $C_{\mathrm{LS}}(\mu_x)$ behaves like $\log(1+\frac){1-|x|})$ as $|x|\to 1.$
  • 关键词:circular Cauchy distribution, spectral gap,logarithmic Sobolev inequalities;60E15,39B62,26Dxx
国家哲学社会科学文献中心版权所有