首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Large deviation bounds for the volume of the largest cluster in 2D critical percolation
  • 本地全文:下载
  • 作者:Kiss, Demeter
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2014
  • 卷号:19
  • 页码:1-11
  • DOI:10.1214/ECP.v19-3438
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:Let $M_n$ denote the number of sites in the largest cluster in site percolation on the triangular lattice inside a box side length $n$. We give lower and upper bounds on the probability that $M_n / \mathbb{E} M_n > x$ of the form $\exp(-Cx^{2/\alpha_1})$ for $x \geq 1$ and large $n$ with $\alpha_1 = 5/48$ and $C>0$. Our results extend to other two dimensional lattices and strengthen the previously known exponential upper bound derived by Borgs, Chayes, Kesten and Spencer [BCKS99]. Furthermore, under some general assumptions similar to those in [BCKS99], we derive a similar upper bound in dimensions $d > 2$.
  • 关键词:critical percolation; critical cluster; moment bounds;82B43; 60K35
国家哲学社会科学文献中心版权所有