摘要:In discrete contexts such as the degree distribution for a graph, scale-free has traditionally been defined to be power-law. We propose a reasonable interpretation of scale-free, namely, invariance under the transformation of $p$-thinning, followed by conditioning on being positive.For each $\beta \in (1,2)$, we show that there is a unique distribution which is a fixed point of this transformation; the distribution is power-law-$\beta$, and different from the usual Yule-Simon power law-$\beta$ that arises in preferential attachment models.In addition to characterizing these fixed points, we prove convergence results for iterates of the transformation.