首页    期刊浏览 2025年07月18日 星期五
登录注册

文章基本信息

  • 标题:Bernoulli and self-destructive percolation on non-amenable graphs
  • 本地全文:下载
  • 作者:Ahlberg, Daniel ; Sidoravicius, Vladas ; Tykesson, Johan
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2014
  • 卷号:19
  • 页码:1-6
  • DOI:10.1214/ECP.v19-2611
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:In this note we study some properties of infinite percolation clusters on non-amenable graphs. In particular, we study the percolative properties of the complement of infinite percolation clusters. An approach based on mass-transport is adapted to show that for a large class of non-amenable graphs, the graph obtained by removing each site contained in an infinite percolation cluster has critical percolation threshold which can be arbitrarily close to the critical threshold for the original graph, almost surely, as $p\searrow p_c$. Closely related is the self-destructive percolation process, introduced by J. van den Berg and R. Brouwer, for which we prove that an infinite cluster emerges for any small reinforcement.
国家哲学社会科学文献中心版权所有