首页    期刊浏览 2025年12月25日 星期四
登录注册

文章基本信息

  • 标题:Some limit results for Markov chains indexed by trees
  • 本地全文:下载
  • 作者:Czuppon, Peter ; Pfaffelhuber, Peter
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2014
  • 卷号:19
  • 页码:1-11
  • DOI:10.1214/ECP.v19-3601
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We consider a sequence of Markov chains $(\mathcal X^n)_{n=1,2,...}$ with $\mathcal X^n = (X^n_\sigma)_{\sigma\in\mathcal T}$, indexed by the full binary tree $\mathcal T = \mathcal T_0 \cup \mathcal T_1 \cup ...$, where $\mathcal T_k$ is the $k$th generation of $\mathcal T$. In addition, let $(\Sigma_k)_{k=0,1,2,...}$ be a random walk on $\mathcal T$ with $\Sigma_k \in \mathcal T_k$ and $\widetilde{\mathcal R}^n = (\widetilde R_t^n)_{t\geq 0}$ with $\widetilde R_t^n := X_{\Sigma_{[tn]}}$, arising by observing the Markov chain $\mathcal X^n$ along the random walk. We present a law of large numbers concerning the empirical measure process $\widetilde{\mathcal Z}^n = (\widetilde Z_t^n)_{t\geq 0}$ where $\widetilde{Z}_t^n = \sum_{\sigma\in\mathcal T_{[tn]}} \delta_{X_\sigma^n}$ as $n\to\infty$. Precisely, we show that if $\widetilde{\mathcal R}^n \Rightarrow{n\to\infty} \mathcal R$ for some Feller process $\mathcal R = (R_t)_{t\geq 0}$ with deterministic initial condition, then $\widetilde{\mathcal Z}^n \Rightarrow{n\to\infty} \mathcal Z$ with $Z_t = \delta_{\mathcal L(R_t)}$.
  • 关键词:Tree-indexed Markov chain, weak convergence, tightness, random measure, empirical measure;60F15; 60F05
国家哲学社会科学文献中心版权所有